# JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 

[Contribution from the Chemical Laboratory of the University of California]

# Hindered Rotation of the Methyl Groups in Propane. The Heat Capacity, Vapor Pressure, Heats of Fusion and Vaporization of Propane. Entropy and Density of the Gas 

By J. D. Kemp* and Clari J. Egan

Evidence proving the existence of a high potential barrier which hinders the rotation of the methyl groups about the single carbon-carbon bond in ethane ${ }^{1-8}$ has made apparent the need for more experimental data on the hindering potentials in similar molecules. Accordingly, the entropy of propane gas has been obtained experimentally from calorimetric data with the aid of the third law of thermodynamics, and has also been calculated as a function of the height of the potential barrier by means of spectroscopic and molecular structure data. The contributions of a hindered rotator to the entropy, energy, and heat capacity have been given by Pitzer. ${ }^{4}$ The height of the potential barrier was determined as that necessary to bring the spectroscopic entropy value into agreement with the experimental entropy value.

Purification of Propane.-C. P. propane, of $99.9 \%$ purity, from the Ohio Chemical Company, was bubbled through 12 N sodium hydroxide and $36 N$ sulfuric acid. It was then passed through a tube containing phosphorus pentoxide and condensed in a previously evacuated bulb. The liquid was subjected to two successive fractionations in a vacuum-jacketed fractionating column,

[^0]the middle $30 \%$ being retained each time. From the course of the heat capacity curve just below the melting point, the amount of liquid-soluble solid-insoluble impurity was estimated to be less than 0.001 mole per cent. The method of making this calculation has been described previously. ${ }^{5}$ A less accurate value of 0.002 mole per cent. impurity was calculated from the change of the melting point in heating from 5 to $20 \%$ melted.

Apparatus and Measurement of Amount. The Density of Propane at 1 Atmosphere and $298.10^{\circ} \mathrm{K}$.-The calorimetric apparatus and procedure have been described previously, ${ }^{6,7}$ Gold Calorimeter IV was used for the investigation. The volume of the propane was determined by means of the 5 -liter measuring bulb described by Giauque and Johnston. ${ }^{8}$
A gas density determination was made after each of the three heats of vaporization. The volumetrically measured propane was condensed and weighed in a glass bulb containing pentane, which reduced the vapor pressure of the propane. The molal volume of propane, $V$, at $T$ near $298^{\circ} \mathrm{K}$. and $P$ near 1 atm . was found to be

$$
\begin{equation*}
V=\frac{82.06 T}{P}-401 \neq 7 \mathrm{cc} \tag{1}
\end{equation*}
$$

This gives $1.8325 \pm 0.0007 \mathrm{~g}$./liter for the density of propane gas at $298.10^{\circ} \mathrm{K}$. and 1 atm.
(5) Johnston and Giauque, This Journal, 51, 3194 (1929).
(6) Kemp and Giauque, ibid., 59, 79 (1937).
(7) Giauque and Egan, J. Chem. Phys., 5, 45 (1937).
(8) Giauque and Johnston, This Journal, 51, 2300 (1929).

Vapor Pressure.--The procedure used in the measurements of vapor pressure has been described previously. ${ }^{6}$ The observations have been represented by the equation
liquid propane, 166 to $231^{\circ} \mathrm{K}$., ( 1$)^{\circ} \mathrm{C}=273.10^{\circ} \mathrm{K}$.)
$\left.\log _{10} P_{(\text {Int. cm. } \mathrm{H} \mathrm{E}}\right)=-(1325.358 / T)+9.64920-$
$0.0118950 T+0.000013420 T^{2}$
A summary of the measurements is presented in Table I. The calculated and observed values are compared in columns 3 and 4 . Temperatures have been given to $0.001^{\circ}$ because of the high relative accuracy. The absolute temperatures may be in error by several hundredths of a degree. Column 5 contains values of the rate of change of pressure with temperature calculated from equation (2).


Fig. 1.-Heat capacity of propane in cal./dcg. per mole.

Table I
Vapor Pressure of Liquid Propana

$$
\left(0^{\circ} \mathrm{C}=273.10^{\circ} \mathrm{K}\right)
$$

| $T,{ }^{\circ} \mathrm{K}$. | $P_{\text {int. }}$ cm obsd. | $\begin{gathered} P_{\text {obsd. }}- \\ P_{\text {calcd. }} \end{gathered}$ | $\underset{T_{\text {obsd. }}}{T_{\text {Lalcd. }}}$ | $\frac{\mathrm{d})^{\mathrm{cm}} \mathrm{~cm} .}{\mathrm{d} \bar{T}} \overline{\mathrm{deg}} .$ |
| :---: | :---: | :---: | :---: | :---: |
| 166.140 | 1.161 | -0.003 | +0.028 | 0.108 |
| 173.270 | 2.200 | +.002 | -. 011 | . 187 |
| 179.792 | 3.739 | . 0000 | . 000 | 292 |
| 187.297 | 6.544 | . 000 | . 000 | 466 |
| 195.081 | 11.103 | -. 0022 | +.003 | 720 |
| 202.860 | 17.992 | . 000 | . 0000 | 1.067 |
| 209.876 | 26.833 | -. .013 | +.009 | 1.472 |
| 214.932 | 35.166 | . 000 | . 000 | 1.827 |
| 220.209 | 45.913 | +.001 | $-.000$ | 2.257 |
| 225.048 | 57.889 | -. 015 | +.006 | 2.708 |
| 228.756 | 68.619 | --.032 | +.010 | 3.092 |
| 331.412 | 75.271 | +- 011. | --. 010.4 | 3.392 |

Table II
Melting Point of Propane
$\left(0^{\circ} \mathrm{C}=273.10^{\circ} \mathrm{K}\right)$

$$
\underset{V_{/}}{V_{i c}} \begin{array}{r}
T .{ }^{\circ} \mathrm{K} . \text { resistance } \\
\text { nhermometer }
\end{array} \quad \begin{gathered}
T,{ }^{\circ} \mathrm{K} . \\
\text { thermocoup }
\end{gathered}
$$

| Time | necled | thermometer <br> Stopped supply of heat | thermocoupl |
| :--- | :---: | :---: | :---: |
| $0: 00$ |  | 85.43 |  |
| $0: 55$ | 5 | 85.428 | 85.43 |
| $1: 27$ | 5 | 85.424 | 85.43 |
| $2: 00$ | - | 85.426 |  |

Stopped supply of heat $85.434 \quad 85.43$ 85.430 85.45 $85.430 \quad 85.44$

Stopped supply of heat $85.436 \quad 85.45$
Stopped supply of heat $85.439 \quad 85.4$ $85.45 \pm 0.05^{\circ} \mathrm{K}$.
Accepted value

The boiling point calculated from equation (2) is $231.04 \pm 0.05^{\circ} \mathrm{K}$ $\left(0^{\circ} \mathrm{C} .=273.10^{\circ} \mathrm{K}\right.$.).
Melting Point.-The melting point was observed with various percentages of the propane melted. The results are summarized in Table II. Table III contains a summary of the melting and boiling point temperatures observed by other experimenters.
Heat Capacity of Propane.-No measured values of the heat capacity of condensed propane below the boiling point could be found in the literature.

The heat capacity measurements are given in Table IV. 1.0004 absolute joules was taken equal to 1 International joule and 4.185 absolute joules equal to 1 calorie. A graphical

Table III
Melting and Boiling Point Temperatures of Propane

$$
\begin{aligned}
& \mathrm{M} \cdot \mathrm{M}_{\mathrm{K}}^{\mathrm{K}} . \quad \mathrm{T} \cdot \mathrm{p}_{\mathrm{K}} . \\
& \text { Observer }
\end{aligned}
$$

228.1 Olszewski ${ }^{\text { }}$ (1894)
229.0 Burrell and Robertson ${ }^{10}$ (1915) Maass and Wright ${ }^{11}$ (1921) Dana, Jenkins, Burdick and Tinmm $^{12}$ (1926)
Irancis and Robbins ${ }^{13}$ (1933)
$86.0 \quad 230.93 \quad$ Hicks-Bruun and Bruun ${ }^{14}$ (1936)
$85.45 \quad 231.04$ This rescarch

[^1]representation is shown in Fig. 1. Table V contains values of the heat capacity taken from a smooth curve through the data.

| Table IV |  |  |  |
| :---: | :---: | :---: | :---: |
| Heat Capacity of Propane |  |  |  |
| Molecular weight, 44.092; ${ }^{15} 1.6779$ moles in calorimeter |  |  |  |
| T, ${ }^{\circ} \mathrm{K}$. | $C_{p}$ cal./deg. per mole | $\Delta T$ | Series |
| 13.29 | 0.514 | 3.375 | II |
| 16.36 | . 865 | 2.795 | II |
| 19.60 | 1.504 | 3.705 | II |
| 23.11 | 2.257 | 3.315 | II |
| 26.57 | 2.970 | 3.609 | II |
| 30.51 | 3.864 | 4.221 | II |
| 34.58 | 4.870 | 3.915 | II |
| 38.85 | 5.785 | 4.590 | II |
| 43.68 | 6.682 | 5.132 | II |
| 48.91 | 7.593 | 5.219 | II |
| 54.48 | 8.471 | 4.899 | II |
| 59.16 | 9.328 | 5.447 | II |
| 64.87 | 10.08 | 5.947 | II |
| 70.96 | 10.87 | 6.373 | II |
| 77.05 | 11.69 | 5.733 | II |
| 81.32 | 12.21 | 2.673 | II |
| 83.60 | 12.42 | 1.851 | III |
| 83.84 | 12.60 | 2.551 | II |
| 84.75 | 12.70 | 0.438 | III |
| 85.14 | 13.14 | . 343 | III |
| 85.45 | Melting point |  |  |
| 89.67 | 20.20 | 5.339 | I |
| 95.48 | 20.25 | 6.134 | I |
| 101.91 | 20.33 | 6.642 | I |
| 108.45 | 20.41 | 6.326 | I |
| 115.11 | 20.50 | 6.879 | I |
| 121.92 | 20.59 | 6.600 | I |
| 128.85 | 20.68 | 7.119 | I |
| 135.90 | 20.84 | 6.827 | I |
| 142.74 | 20.89 | 6.578 | I |
| 149.69 | 21.06 | 7.089 | I |
| 156.80 | 21.19 | 6.840 | I |
| 164.34 | 21.35 | 7.910 | I |
| 171.97 | 21.47 | 7.031 | I |
| 179.04 | 21.68 | 6.769 | I |
| 185.85 | 21.90 | 6.547 | I |
| 194.23 | 22.17 | 6.243 | I |
| 200.89 | 22.42 | 6.041 | I |
| 207.04 | 22.52 | 5.885 | I |
| 213.05 | 22.80 | 5.707 | I |
| 219.20 | 23.00 | 5.539 | I |
| 224.91 | 23.29 | 5.401 | I |
| 229.76 | 23.48 | 3.941 | I |
| 231.04 | Boiling point |  |  |

Heat of Fusion.-No measured values of the heat of fusion were found in the literature. The present measurements of the heat of fusion of propane are summarized in Table VI.
Heat of Vaporization.-The propane was vaporized from the calorimeter into the 5 -liter (15) 1nt. At. Wt. Committee, This Journal. 59, 219 (1937).

Table V
Heat Capacity of Propane
Molecular weight, 44,092 . Values taken from smooth curve through observations.


Avèrage value $=842.2 \pm 0.8$ cal. $/$ mole
measuring bulb mentioned previously. A constant pressure regulating device described by Giauque and Johnston ${ }^{8}$ was used. The individual measurements are summarized in Table VII, and are compared with the value calculated from equation (2) and Berthelot's equation. ${ }^{7}$ The value measured by Dana and co-workers ${ }^{12}$ is also included.

## Table VII

Heat of Vaporization of Propane
Boiling point, $231.04^{\circ} \mathrm{K}$.; molecular weight, 44.092 .

| No. motes <br> vaporized | Time of energy <br> input, min. | $\Delta H$ at $780 \mathrm{mmim}$. <br> cal.//mole |
| :---: | :---: | :---: |
| 0.21634 | 38 | 4488 |
| .21871 | 39 | 4487 |
| .21865 | 39 | 4485 |
|  | Average value $=\frac{4487 \pm 4}{}$ |  |

From vapor pressure equation 2.
This includes a Berthelot correction of -180
cal./mole
4475
Value of Dana, Jenkins, Burdick and Timm $\quad 4475 \neq 45$
Entropy from Calorimetric Data.-The calculation of the entropy of propane at the boiling point, $231.04^{\circ} \mathrm{K}$., from the calorimetric data is summarized in Table VIII.

## Table VIII

Entropy of Propane from Calorimetric Data $0-15^{\circ} \mathrm{K}$., Debye extrapolation, $\left(h c^{2} / k=0.25\right.$ 128)

Solid, $15-85.45^{\circ} \mathrm{K}$., graphical 9.702
Fusion, 842.2/85. 45
9.856

Liquid, $8 \overline{0} .45-231.04^{\circ} \mathrm{K}$., graphical
21.063

Vaporization, 4487/231.04
Entropy of actual gas at boiling point Correction for gas imperfection
$60.29 \pm 0.1$
0.16
$60.4 .5 \mathrm{cal} / \mathrm{deg}$.
ntropy of ideal gas at 1 atin
and $231.04^{\circ} \mathrm{K}$.
per mole
The correction for gas imperfection was obtained from the expression ${ }^{3}$

$$
S_{\text {ideui }}-S_{\text {utctual }}=\left(27 R T_{\mathrm{c}}^{3} P\right) / 32 T^{3} P_{\mathrm{v}}
$$

The values of the critical pressure and temperature were taken as $T_{\mathrm{c}}=369.9^{\circ} \mathrm{K} . \quad P_{\mathrm{c}}=42.01 \mathrm{~atm} .^{16}$

Magnitude of the Potential Barrier.-Although it would be more logical to evaluate the entropy due to the two degrees of freedom concerned with the internal rotation of the methyl groups and thereby estimate the magnitude of the potential barrier, it is more convenient to calculate an entropy value with the assumption of free internal rotation and evaluate $S_{\text {free }}-S_{\text {experimental }}$. With this quantity and a table of $S_{\text {free }}-S_{\text {hindered }}$ as a function of the potential barrier, the magnitude of the barrier may be obtained.

The values of the natural constants used were those given in the "International Critical Tables." The following data from the electron diffraction measurements of Bauer ${ }^{17}$ were used to calculate the rotational contribution to the entropy.

$$
\begin{aligned}
\mathrm{C}-\mathrm{C} & =1.503 \pm 0.02 \AA . \\
\mathrm{C}-\mathrm{H} & =1.08_{1} \pm 0.02 \AA . \\
\mathrm{C}-\mathrm{C}-\mathrm{C} & =114_{12}^{\circ}
\end{aligned}
$$

The remaining $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angles were assumed to be tetrahedral, namely, $109^{\circ} 28^{\prime}$. Kassel ${ }^{18}$ has derived the partition function for freely rotating propane. The expression for the rotational entropy

$$
\begin{aligned}
& S_{\text {free } 0 \cdot \text { ation }}=R / 2 \ln \left(I_{\mathrm{x}}-2 K \sin ^{2} \alpha\right)\left(I_{y}-\right. \\
& \left.2 K \cos ^{2} \alpha\right)\left(I_{z}\right)(K)^{2}+5 / 2 R \ln T-R \ln \sigma+447.599
\end{aligned}
$$

may be separated into the usual expression
$S_{\text {external rotation }}=R / 2 \ln I_{\mathrm{x}} I_{\mathrm{y}} I_{z}+3 / 2 R \ln T-$

$$
R \ln 2+267.649
$$

plus
$S_{\text {free internal rotetion }}=R / 2 \ln \left(I_{\mathbf{r}}\right)^{2}+R \ln T-R \ln 9+179.950$

[^2]where the reduced moment
$$
\left(I_{\mathrm{r}}\right)^{2}=(K)^{2}\left(1-\frac{2 K \sin ^{2} \alpha}{I_{\mathrm{x}}}\right)\left(1-\frac{2 K \cos ^{2} \alpha}{I_{\mathrm{y}}}\right)
$$
$K=$ moment of inertia of a methyl group. $\alpha=$ one-half of the C-C-C angle. $\quad I_{x}=$ moment of inertia about the axis through the center of gravity and perpendicular to the carbon plane. $I_{y}=$ moment of inertia about the axis which bisects the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle in the carbon plane. $I_{\mathrm{x}}=$ moment of inertia about the axis through the center of gravity and perpendicular to both $y$ and $z$ axes.
From the above data the moments of inertia times $10^{40} \mathrm{~g} . \mathrm{cm} .{ }^{2}$ were found to be $I_{\mathrm{x}}=26.9$; $I_{y}=96.8 ; I_{z}=108.2 ; K=5.18 ; I_{r}^{2}=18.93$. The symmetry number $\sigma$ was taken equal to 18 .
Kohlrausch and Köpp ${ }^{19}$ have summarized the Raman data on propane. They have also included the results of Bartholome ${ }^{20}$ on the infrared spectrum of propane. The three vibrations of the carbon skeleton have been identified at 373,867 and $1053 \mathrm{~cm} .^{-1}$. For the calculation of the vibrational contribution to the entropy, the remainitg frequencies were estimated as follows: seven at $950 \mathrm{~cm} .^{-1}$, seven at $1440 \mathrm{~cm} .^{-1}$ and eight at $3000 \mathrm{~cm} .^{-1.21}$

The sum of the translational, rotational and vibrational entropies of freely rotating propane was calculated to be $63.85 \pm 0.25 \mathrm{cal} . / \mathrm{deg}$. per mole at one atmosphere at the boiling point, $231.04^{\circ} \mathrm{K}$. The disagreement of this value with the experimental value, $60.45 \pm 0.10 \mathrm{cal} . / \mathrm{deg}$. per mole, indicates that the rotation of the methyl groups in propane is hindered rather than free. Although lack of equilibrium in the crystal at low temperatures has caused discrepancies in the experimental and spectroscopic entropy values of several molecules, the reasons for this lack of equilibrium are known and such an explanation for the disagreement in the case of propane as in the cases of ethane, ${ }^{1}$ tetramethylmethane ${ }^{22}$ and methylamine ${ }^{23}$ seems very improbable. Pitzer, ${ }^{21}$ by interpolating the values of the barriers present in similar molecules, has predicted a hindering potential of $3400 \mathrm{cal} . /$ mole for propane.

The difference, $S_{\text {free }}-S_{\text {experimental }}$, was found to be $3.40 \pm 0.3 \mathrm{cal} . / \mathrm{deg}$. per mole at the boiling point. This amount of entropy corresponds to a

[^3]barrier of $3300 \pm 400 \mathrm{cal} . /$ mole, ${ }^{24}$ which is in excellent agreement with the predicted value mentioned above. The entropy at $298.10^{\circ} \mathrm{K}$. has been calculated to be $64.7 \pm 0.3 \mathrm{cal} . / \mathrm{deg}$. per mole from molecular and spectroscopic data, the experimental value of the potential barrier and the experimental value of the entropy at the boiling point. This value at $298.10^{\circ} \mathrm{K}$. is the entropy to be used in thermodynamic calculations.
In these calculations the nuclear spin entropy, $8 R \ln 2=11.015 \mathrm{cal} . /$ deg. per mole, has been neglected. Table IX contains a summary of the calculations.


## Summary

The heat capacity of condensed propane has been measured from $15^{\circ} \mathrm{K}$. to the boiling point. The melting point was found to be $85.45 \pm$ $0.05^{\circ} \mathrm{K}$., the boiling point $231.04 \pm 0.05^{\circ} \mathrm{K}$., the heat of fusion $842.2 \pm 0.8 \mathrm{cal} . / \mathrm{mole}$ and the heat of vaporization $4487 \pm 4 \mathrm{cal} . /$ mole.

Vapor pressure measurements have been made on liquid propane and the results have been represented by the equation (liquid propane, 166 to $\left.231^{\circ} \mathrm{K} .\left(0^{\circ} \mathrm{C} .=273.10^{\circ} \mathrm{K}.\right)\right)$
$\log _{10} P_{(\mathrm{tnt} . \mathrm{cm} . \mathrm{Hg})}=-(1325.358 / T)+9.64920-$ $0.0118950 T+0.000013420 T^{2}$

The density of propane gas at $298.10^{\circ} \mathrm{K}$, and one atmosphere was found to be $1.8325 \pm 0.0007$ g./liter.

At one atmosphere at the boiling point the experimental entropy of propane (ideal gas) was evaluated as $60.45 \pm 0.10 \mathrm{cal} . / \mathrm{deg}$. per mole.

The entropy of propane calculated with the assumption of free internal rotation minus the experimental entropy, $S_{\text {free }}-S_{\text {experimental }}$ (at the boiling point), was found to be $3.40 \pm 0.3 \mathrm{cal}$./ deg. per mole, which corresponds to a potential barrier of $3300 \pm 400 \mathrm{cal}$./mole hindering the internal rotation of the methyl groups.

The entropy of propane (ideal gas, with a 3300 cal./mole barrier) at one atmosphere and $298.10^{\circ} \mathrm{K}$. was found to be $64.7 \pm 0.3 \mathrm{cal} . / \mathrm{deg}$. per mole (nuclear spin entropy not included), This is the entropy value to be used in thermodynamic calculations.

Berkeley, Calif.
Received March 30, 1938
[Contribution from the Department of Chemistry, Duke University]

## Vapor Pressure Studies. I. Evidence for the Validity of Raoult's Law. The Systems Benzene-Diphenyl, Benzene-Benzyl Benzoate, Ethyl Acetate-Benzyl Benzoate

By H. H. Gilmann ${ }^{1}$ and Paul Gross

Attention recently has been drawn ${ }^{2}$ to the paucity of direct experimental evidence which is available in support of Raoult's law. In view of its importance for modern solution theory and because of the difficulty of giving a general theoretical foundation to the law, the desirability ${ }^{3}$ of adding to this evidence has been emphasized.

[^4]In connection with a study of the stability of addition compounds in non-aqueous systems as indicated by partial pressure determinations, partial pressure data were also obtained for certain binary systems consisting of a volatile and a nonvolatile component. Some of these cases furnish evidence bearing on the validity of Raoult's law.

The systems in question are benzene-diphenyl, benzene-benzyl benzoate and ethyl acetate-benzyl benzoate. Benzyl benzoate boils at $324^{\circ}$


[^0]:    (*) Present address: Standard Oil Co., Richmond, Calif.
    (1) Kemp and Pitzer, J. Chem. Phys., 4, 749 (1936): Tars Journal, 69,276 (1937).
    (2) Howard, Phys. Rev., 51, 53 (1937).
    (3) Kistiakowsky and Nazmi, J. Chem. Phys., 6, 18 (1938).
    (4) Pitzer, ibid., ©, 469 (1937).

[^1]:    (9) Olszewski, Ber., 27, 3305 (1894).
    (10) Burrell and Robertson, This Jutirnal, 37, 2188 (1915)
    (11) Maass and Wright, ibid., 43, 1098 (1921).
    (12) Dana, Jenkins, Burdick and Timm, Ryfig. Eng., 12, 38; (1926).
    (13) Irancis and Robbins, This Journat, 55, 4339 (1933).
    (14) Ticks-13ruum and Bruun, ihid, 58, 810 (1936).

[^2]:    (10) Beattie, Poffenberger and Hadlock, J. Chem. Phys, 3, 00 1935).
    17) Bauer. ibid., 4, 406 (1936).
    18) Kussel, ibid., 4, 2\%6, (1936)

[^3]:    (19) Kohlrausch and Köppl, Z. physik. Chem., B26, 209 (1934).
    (20) Bartholome, ibid., B23, 152 (1933).
    (21) Pitzer, J. Chem. Phys., 5, 473 (1937)
    (22) Astori and Messerly, This Journal, 58, 2354 (1936)
    2.3 Aston, Siller and Messerly, ibid., 69, 1743 (193\%)

[^4]:    (1) Part of a thesis of H. H. Gilmann submitted in partial fulfilment of the requirements for the Ph.D. in Chemistry.
    (2) Guggenheim, Trans. Faraday Soc., 38, 181 (1937).
    (3) Hildebrand, This Journal, 59, 794 (1937).

